Search results for " 14L30"
showing 4 items of 4 documents
The J-invariant, Tits algebras and Triality
2012
In the present paper we set up a connection between the indices of the Tits algebras of a simple linear algebraic group $G$ and the degree one parameters of its motivic $J$-invariant. Our main technical tool are the second Chern class map and Grothendieck's $\gamma$-filtration. As an application we recover some known results on the $J$-invariant of quadratic forms of small dimension; we describe all possible values of the $J$-invariant of an algebra with orthogonal involution up to degree 8 and give explicit examples; we establish several relations between the $J$-invariant of an algebra $A$ with orthogonal involution and the $J$-invariant of the corresponding quadratic form over the functi…
Invariant deformation theory of affine schemes with reductive group action
2015
We develop an invariant deformation theory, in a form accessible to practice, for affine schemes $W$ equipped with an action of a reductive algebraic group $G$. Given the defining equations of a $G$-invariant subscheme $X \subset W$, we device an algorithm to compute the universal deformation of $X$ in terms of generators and relations up to a given order. In many situations, our algorithm even computes an algebraization of the universal deformation. As an application, we determine new families of examples of the invariant Hilbert scheme of Alexeev and Brion, where $G$ is a classical group acting on a classical representation, and describe their singularities.
Embeddings of a family of Danielewski hypersurfaces and certain \C^+-actions on \C^3
2006
International audience; We consider the family of complex polynomials in \C[x,y,z] of the form x^2y-z^2-xq(x,z). Two such polynomials P_1 and P_2 are equivalent if there is an automorphism \varphi of \C[x,y,z] such that \varphi(P_1)=P_2. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category.
Rationally integrable vector fields and rational additive group actions
2016
International audience; We characterize rational actions of the additive group on algebraic varieties defined over a field of characteristic zero in terms of a suitable integrability property of their associated velocity vector fields. This extends the classical correspondence between regular actions of the additive group on affine algebraic varieties and the so-called locally nilpotent derivations of their coordinate rings. Our results lead in particular to a complete characterization of regular additive group actions on semi-affine varieties in terms of their associated vector fields. Among other applications, we review properties of the rational counterpart of the Makar-Limanov invariant…